2(x^2+1/x^2)+5(x+1/x)+1=0

Simple and best practice solution for 2(x^2+1/x^2)+5(x+1/x)+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x^2+1/x^2)+5(x+1/x)+1=0 equation:



2(x^2+1/x^2)+5(x+1/x)+1=0
Domain of the equation: x^2)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2(x^2+1/x^2)+5(+x+1/x)+1=0
We multiply parentheses
2x^2+2x+5x+5x+1=0
We add all the numbers together, and all the variables
2x^2+12x+1=0
a = 2; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·2·1
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{34}}{2*2}=\frac{-12-2\sqrt{34}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{34}}{2*2}=\frac{-12+2\sqrt{34}}{4} $

See similar equations:

| 14j-9j+3j=8 | | (1-2x)(x+4)=0 | | -7(7x+9=49x-63 | | 20v-11v-5v-3v=12 | | 9w+2w-9w-2w+w=18 | | 7n-6n=16 | | 1/15x=39 | | 15d-5d=10 | | 6x-3(x+2)=3-4(x+3) | | 1/15x=30 | | 5q-4q=15 | | 19g-12g=14 | | 3^(2x+3)=4 | | 3^2x+3=4 | | 7m-8=2m+12 | | F(1)=×^2+4x-5 | | 6k-4k=12 | | m-1/2m+1=0 | | 3(y-4)=13 | | y^-8y-4=0 | | 18=j+299/28 | | q+26/5=10 | | 7x^2-4x=5x | | 3z-16+15z=12z+20 | | 7x-4x=5x | | 5=r/6-1 | | 25=14+x/11 | | 4b+1=3b-2 | | 20=s/2+13 | | 1=m/6-5 | | t/10-1=1 | | 3/4x+1/2=5/6x-1/3 |

Equations solver categories